*Artificial Intelligence for EarthObservation
Our focus is an end to end learning approach: in goes data, out goes results, obtaining a time reduction in data preparation and processing of several orders of magnitude. Our time performance improvement is translated in affordable services.
By combining multiple data sources (optical, radar; satellite, UAV; high and low resolution) and leveraging temporal information we can take out the most from the available data at any time without sacrificing performance.
Our automated labelling tool enables fast generation of new data as it is available in order to re-train and improve our models on a daily basis.
We pre-train our models with EO data, instead of using models pre-trained on natural imagery. This improves the data efficency of the models, obtaining very good results with smaller labelling efforts.
We design and develop Neural Networks adapted to EO data peculiarities, working with multi-modal data and giving predictions for different tasks while maximizing the model capacity and parameter sharing.
Classification, segmentation and detection models to measure densities, quantify targets and evaluate changes. All accessible through SPAI.